HIGH-STAKES TESTING

Who has led our nation, the global leader in democracy, economics, science, technology, medicine, and education, to condemn its teachers?

Issues

- Standardized test scores continue to correlate best with socio-economic indicators.
- Primary-aged children take high-stake tests without knowing what is at stake.
- Speed and retrieval of “facts” are valued above mental processes and critical thinking.
- Competency in math, reading, and writing are considered an “education.”
- Standardized testing lowers levels of learning in our schools.
- One-size-fits-all mentality rules our schools.
- Students are judged and sentenced by high-stakes test when longitudinal, authentic assessments are readily available.
- Test making is a “closed shop” with external checks and balances absent.
- Professional educators are left “out of the loop.”

Testing Biases

Scheuneman and Slaughter (1991) list five biases that make test reliability suspect: historical, cultural, biological, educational, and psychometric. Unfair penalization takes place when test-takers from one group perform better than those from another (McMillian, 2001). Kohn (2000) suggests standardized tests best measure the size of the test-takers’ homes.

Historical bias occurs when candidates from states and communities with historically poor support, racial inequality or mismanagement, perform lower than those from historically successful schools (Gage and Berliner, 1998; Kozol, 1991). Urban or rural candidates are less likely to do as well as those from suburban schools (Tanner, 2001; Gage and Beliner, 1998). Cultural bias occurs when one race performs lower than other races on a given test. Latham, Gitomer, and Ziomek (1999) report whites did better than minorities on Praxis II from 1995-98. Sadker and Sadker (2000) reported that in 1998, Asians and whites tend to out perform other races by 40 or more points on the SAT. This trend is not limited to 1998 or SAT tests (Sadovnik, Cookson, and Semel, 2001). Candidates from minorities and low-economic areas find themselves at a disadvantage when standardized with predominantly white, middle-class students (Nieto, 2000; Boutte, 1998).

Biological biases occur when one gender consistently out-performs another gender. Historically, females surpass males verbally while males surpass females mathematically (Tanner, 2001). Learning preferences place both genders at a disadvantage according to their proclivity toward a haptic rather than visual or audio learning style (Stumpf and Stanely, 1996; Gallagher and DeLisi, 1994; Hedges and Friedman, 1993).

Educational bias occurs when candidates from educated families out-perform students from uneducated families. Webb, Metha and Jordon (2000) suggest the single
most important variable accounting for differences in test scores is the educational and social class background of the family.

Psychometric bias occurs when candidates perform poorly because of test center confusion, long travel time, misunderstood instructions, test language, timing, and lack of test-wiseness (Tanner, 2001).

Other Concerns

Relevance-Students may be tested on content knowledge before it has personal relevance in a daily context. Pythagorean’s theorem is irrelevant if the circumstances for its use are absent. Ausubel (1968) and Gagné (1985) stress the need for new knowledge to have personal meaning and relevant connections to everyday life.

Toilers - Is academic “perfection” the most important trait among students? Students who have experienced “not getting it” continue to make valuable contributions to society.

Right verses left-brained processing-Lateral dominance research suggests that right- and left-brained thinkers learn and use information differently (Rubenzer, 1978). Hauck (1985) reported significant differences between hemispheric dominance and test scores on a 30-item multiple-choice assessment. Research in multiple intelligences suggests that the evaluation of linguistic and mathematical intelligences still leaves five intelligences un-assessed (Gardner, 1983)

References

Ewing, T., (2002, April 17). Debunking myths about standardized testing, E-mail response, on article by Kurt M. Landgraf, President & CEO, retrieved on April 17, 2002 at http://www.ets.org/aboutets/issues8.htm, initiated through issues@ETS.org.

Hauck, L.S., Jr., (1985). Differences in information mapping strategies in left and right brain learners. ERIC: ED262496

Reading List

Prepared for the American Association of Colleges for Teacher Education (AACTE) Annual Meeting held in February 2002 at the Hilton New York, New York City.

Prepared by Dara Wakefield, Associate Professor
Berry College, Charter School of Education and Human Services